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Abstract

outflow and the intensity of the noise.

Background: Clinical measurements of intracranial pressure (ICP) over time show fluctuations around the
deterministic time path predicted by a classic mathematical model in hydrocephalus research. Thus an important
issue in mathematical research on hydrocephalus remains unaddressed—modeling the effect of noise on CSF
dynamics. Our objective is to mathematically model the noise in the data.

Methods: The classic model relating the temporal evolution of ICP in pressure-volume studies to infusions is a
nonlinear differential equation based on natural physical analogies between CSF dynamics and an electrical circuit.
Brownian motion was incorporated into the differential equation describing CSF dynamics to obtain a nonlinear
stochastic differential equation (SDE) that accommodates the fluctuations in ICP.

Results: The SDE is explicitly solved and the dynamic probabilities of exceeding critical levels of ICP under different
clinical conditions are computed. A key finding is that the probabilities display strong threshold effects with
respect to noise. Above the noise threshold, the probabilities are significantly influenced by the resistance to CSF

Conclusions: Fluctuations in the CSF formation rate increase fluctuations in the ICP and they should be minimized
to lower the patient’s risk. The nonlinear SDE provides a scientific methodology for dynamic risk management of
patients. The dynamic output of the SDE matches the noisy ICP data generated by the actual intracranial dynamics
of patients better than the classic model used in prior research.

Background

Intracranial dynamics play a central role in healthy brain
function because disturbances in the internal fluid envir-
onment of the skull can lead to multiple complications
such as, among other things, hydrocephalus [1]. Intra-
cranial dynamics, driven by the circulation of CSF, are
important because CSF protects the brain from injury,
contains nutrients enabling normal functioning of the
brain and, transports waste products away from the sur-
rounding tissues. Much more is involved in hydrocepha-
lus than a simple disorder of CSF circulation [2]; it is
considered a complex spectrum of diseases, primarily
defined by perturbation of the cranial contents—
operationalized as CSF volume—and the intracranial
pressure [3]. Given the complex nature of hydrocepha-
lus, we define hydrocephalus as a disease associated
with disturbances in the CSF dynamics, as in [1].
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Experimental evidence compellingly validates that,
over a large range of pressures, brain compliance is not
constant [4]. Marmarou [5] postulated a hyperbolic
compliance function that decreases as the pressure
increases, which coupled with other assumptions to be
described below, led to a nonlinear ordinary differential
equation for the variation of ICP over time. The Mar-
marou model [5] is fundamental in mathematical pres-
sure-volume models of CSF dynamics. While the
Marmarou model has deservedly remained the mainstay
of quantitative modeling of the dynamics of CSF flow,
its deterministic nature prevents taking full advantage of
the information in real ICP measurements, because
deterministic models average over all possible fluctua-
tions of real data. The ICP waveform contains additional
information that is ignored by the time-averaged ICP
mean value [6]. We draw upon the fundamental princi-
ples of modeling cerebrospinal fluid dynamics explicated
in [2]. Our starting point is Marmorou’s model [5,7] of
pressure-volume compensation, which was subsequently
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modified in [8] and [9]. Central to the development of
the Marmarou model is a conservation law. Conserva-
tion laws are ubiquitous in physics [10]. The Marmarou
model represents CSF flow dynamics through a conser-
vation equation relating the production of CSF to its
storage and reabsorption [2].

Production of CSF = storage of CSF + reabsorption of CSF (1)

Next, reabsorption is proportional to the differential
between CSF pressure (p) and pressure in the sagittal
sinuses (pss):

reabsorption = % (2)

Pss is considered a constant parameter, determined by
central venous pressure. The coefficient R is the resis-
tance to CSF reabsorbtion or outflow, measured in units
of mmHg mL™' min. Storage of CSF is proportional to
the cerebrospinal compliance C, measured in units of
mL mmHg .

dp
storage = C m (3)

The compliance of the cerebrospinal space is inversely
proportional to the differential of CSF pressure p and
the reference pressure pg [8,11], and is considered the
most important law of cerebrospinal dynamic compen-
sation [2]:

1

C=—
E(p—po) @

The coefficient E is called the cerebral elasticity (or
elastance coefficient) and has the units mL™ [12]. Next,
by exploiting an analogy between an electrical model of
CSF compensation, as described in [5], and adapted in
[2], the deterministic description of the dynamics of
CSF flow are given by:

L db, poPo _yy

E(p—py) dt R )

where I(t) is the rate of external volume addition and
pp is a baseline pressure. The circuit diagram, repro-
duced from [2], is shown in Figure 1. An electrical cir-
cuit analogy is also used in [13] and [14] to study the
dynamics of ICP in the ventricular compartments. The
reference pressure parameter p, is sometimes taken to
be zero, as for example, in [5] because, as noted in [2],
the significance of py is unclear. Consequently, we
assume pg = 0, which results in the equation:

1 dp p-py
— P EPb ¢ 6
Ep dt R (t) (6)
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Figure 1 Electrical circuit analogy for CSF flow dynamics. The
current source reflects formation of CSF; resistor with diode—
unilateral absorption of CSF into the sagittal sinuses; capacitor and
voltage source-nonlinear compliance of CSF space. Py is the
pressure in the sagittal sinuses. Py is the reference pressure. Figure
reproduced from [2] with permission.

The importance of modeling noise in CSF dynamics
Broadly construed, noise arises from variations in fac-
tors that influence the observed outcome—which is the
ICP in this paper— but that have been omitted from
the mathematical model, and from factors affecting the
observed outcome that are beyond the experimenter’s
control. Noise causes deviations of the predicted ICP
from the actual ICP level. Factors uncontrolled by the
experimenter include thermal fluctuations, body move-
ment and breathing. Because a mathematical model is
an abstraction of reality, it is based on simplifying
assumptions, as listed in [3]. The Marmarou model
abstracts the CSF system as an electrical circuit con-
sisting of a nonlinear capacitor (storage mechanism),
resistor (area of CSF absorption), and so on [15].
There remains substantial uncertainty regarding the
average rate of CSF production [16]. Realistic estimates
of the mechanical properties of the living human brain
are hard to discover [15]. The compliance is not an
appropriate indicator of the brain’s elastic properties
[14]. Shunts, used in the treatment of hydrocephalus,
can be dramatically improved by more accurate model-
ing of the CSF dynamics. Shunts providing continuous
CSF drainage are the ideal [17], and nonlinear control
theory can be used to design an automatic controller
for a shunt that provides continuous drainage. But in
order to design a stable controller to facilitate a shunt
with continuous drainage, we need a model of CSF
drainage that either incorporates factors omitted in
extant models, or that accounts for the noise caused
by the omission. Our objective is to incorporate noise
into the dynamics of CSF flow. The effect of noise on
the ICP waveform is discernible in Figure 2, which
shows the fluctuations of the ICP around the determi-
nistic path predicted by the deterministic Marmarou
model.
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Figure 2 Comparison of actual path of ICP with the path
predicted by the deterministic Marmarou model. Reproduced
from [1] with permission. The smooth curve without any ups and
downs is the temporal path of the ICP as predicted by the
deterministic Marmarou model. The fluctuations around that
deterministic path are due to noise arising from the various sources
discussed in the paper.

Methods

Generalizing the CSF dynamics to incorporate noisy flow
Visual examination of the time-series of ICP recordings
shows that the fluctuations are smooth (unlike electrons
in a wire which generate shot noise, characterized by
jumps [18]), and therefore continuous state space Mar-
kov processes are appropriate to capture the noisy
dynamics of CSF flow. A large class of Markov processes
can be represented by SDEs, and here a methodological
choice must be made—noisy dynamic processes can be
represented by stochastic differential equations of the
Ito type or the Stratonovich type which correspond to
two different ways of introducing noise into a dynamic
system. A central difference between the two is that the
Stratonovich SDE uses the usual deterministic calculus
whereas the Ito SDE requires a completely new stochas-
tic calculus. Extensive conceptual, empirical and philo-
sophical discussions of this issue exist in the literature
on mathematical models of electrical, biological and
physical phenomena [19-21]. The overwhelming major-
ity of these discussions conclude that Ito processes, gen-
erated by stochastic differential equations of the Ito
type, are superior to Stratonovich processes, generated
by stochastic differential equations of the Stratonovich
type [22,23]. Ito [24] extended standard deterministic
calculus to a “stochastic calculus” applicable to functions
of a wide class of continuous-time random processes,
known as Ito processes. Given the SDE for the process
under consideration, a result called Ito’s Lemma yields
the SDE driving the dynamics of a general transforma-
tion of the original process [24]. This utilitarian result
allows deducing the stochastic properties of considerably
complex models driven by Ito processes [23]. An essen-
tial property of Ito processes is that nonlinear functions
of Ito processes remain Ito processes—a property called
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closure under nonlinear transformations, indispensable
for practical reasons. From an empirical standpoint, a
compelling advantage of Ito processes is that they often
yield very precise statistical specifications for estimation
[23]. An attractive property of Ito processes—on theore-
tical, mathematical, practical and computational
grounds—is that they are Markov processes. Finally, the
Ito calculus has been extended to embrace general mar-
tingale processes [25]—a development that permits joint
consideration of both smooth noise and noise that
occurs in jumps. Thus our modeling framework can
accommodate neurological phenomena requiring
noise that encompasses both smooth and jumpy varia-
tions in the state of the system, such as the firing of
neurons [26].

Modeling the CSF dynamics as an Ito process to
incorporate noisy flow

Given all these considerations, we modeled the fluctua-
tions in CSF dynamics through an Ito stochastic differ-
ential equation. First we introduced noise into equation
(6) through a white noise process g(t) with intensity
parameter o, which by definition satisfies the following
properties: E[e(t)] = 0, and E[g(t) &(s)] = 0, whenever
t # s. The notation E[.] denotes the expectation opera-
tor, which, when applied to a random quantity such as
&(t), signifies the value of &(t) on average. Thus E[e(t)] =
0 signifies that the average value or mean of the random
error at time “t” is zero, and this is a standard assump-
tion in the literature on modeling noisy phenomena.
The term E[g(t) &(s)] is the expectation operator applied
to the product of random errors at two different times
‘s’ and ‘t;” technically it denotes the covariance between
the errors at two different times. In this case, because of
the zero-mean assumption, it also denotes the correla-
tion between &(t) and &(s); and so the property E[g(t)
¢(s)] = 0 means that the errors at two different times
are uncorrelated, which substantively means that an
error at one point in time does not influence the error
at another point in time. This too is a standard assump-
tion in the dynamic modeling literature.

1 dp p-py
——+——==1(t) + og(t 7
Ep dt R (t) +oe(t) (7)

Next we exploited the fundamental relationship
between a white noise process €(t) and a Brownian

motion process W(t): W(t) = Jsztg(s)dsa, which, when

written in differential notatiosﬁ, yields dW = g(t) dt.

Therefore,
L@+m=[(t)+gd_w (8)
Ep dt R dt
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Rearranging the above terms yields our final model,
which we will call the stochastic Marmarou model.

dp = {Ep I(t) - El’(I’T‘pb)}dt +oEp dW 9)

Note that in order for equation (9) to be dimension-
ally consistent, the unit of ¢ is mL/min. Because the
‘input’ I(t) is the infusion rate which is under direct
experimental control, therefore, in the language of con-
trol theory, I(t) is a ‘control’ variable. In the infusion
studies conducted at Addenbrookes’s Hospital in
Cambridge, UK, I(t) is maintained at a constant rate of
1.5 mL/min. However, factors not within the experimen-
ter’s control also influence the input flow rate. In addi-
tion to the infusion rate of the experimenter which
influences CSF formation, CSF is produced inside the
brain, but much about its production remains unknown
at the present time. Currently, there are no direct meth-
ods to measure the CSF production rate over short peri-
ods of time. Globally, the average secretion rate—used as
a proxy for the production—is 0.35 mL/min with a 95%
confidence range of 0.27 mL/min to 0.45 mL/min [2].
The lack of precise knowledge about the CSF produc-
tion rate and the unmeasured factors that influence it
are sources of noise in the total CSF formation rate.
Consequently the stochastic Marmarou model may be
conceptualized as the classic Marmarou model with a
noisy input flow rate that reflects uncertainty about CSF
formation.

The deterministic Marmarou model is contained in
the final model displayed above—-it surfaces when ¢ =
0 mL/min, which precludes noise, and consequently
produces only the mean ICP value. The general model
with ¢ # 0 mL/min reproduces the fluctuations inherent
in the time-path of real measurements of ICP—informa-
tion which is discarded by the deterministic Marmarou
model. Figure 3 compares the fluctuating path, similar
to the actual noisy ICP data, reproduced by the stochas-
tic Marmarou model with the path predicted by the
deterministic Marmarou model. The mathematical
structure of the Marmarou et al. [5] equation is the clas-
sic Verhulst logistic model, ubiquitous in biological
growth and saturation phenomena [27]. The mathemati-
cal form of equation (9) is the stochastic logistic model
and it is the natural stochastic extension [28,29] of the
Verhulst logistic model.

The clinical significance of the stochastic

Marmarou model

By building the fluctuations right into the dynamics of
the model structure, the stochastic model makes full use
of the information in the variations of the ICP waveform.
From this additional information, the time-varying
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Figure 3 Comparison of deterministic and stochastic Marmarou
model solutions. Values of CSF flow parameters used in this
simulation: E = 0.15 mL™”, p, = 8 mmHg, R = 7 mmHg/(mL/min),
I=15mLlmin”, o = 0.5 mL/min.

probability distributions of the ICP waveform can be
extracted, and it is these latter quantities that enable
computation of the probabilities of clinically relevant
events. It is the knowledge of these probabilities of clini-
cally relevant events that facilitate dynamic risk manage-
ment of the patient. Conceptually, the average value of
p(t) at any given time ‘t’ is the average ICP at that time in
an ensemble of patients with a similar CSF flow profile,
as reflected in the values of the CSF flow parameters.

Analyzing the stochastic Marmarou model

In the Results section, we will display the exact analyti-
cal solution to the stochastic Marmarou model and
derive insights from the solution into the influence of
noise on the ICP at each point in time, and on average.
Under the normal conditions described in [2], biological
processes will settle down to a steady state after the
transients have died out. In the deterministic Marmarou
model [5], the steady state (equilibrium) is found by set-
ting the time rate of change of the ICP equal to zero.
What is the corresponding steady-state concept for a
stochastic process? The stochastic counterpart to the
time-independent steady-state level of the ICP is the
time-independent probability distribution of the ICP,
and the equilibrium probability distribution is to the
stochastic environment as the stable equilibrium point is
to the deterministic one [30]. We derive the equilibrium
probability distribution for the ICP, and from it, draw
conclusions for the influence of CSF flow parameters
and noise intensity upon the average steady-state ICP
level. We compute a measure relevant to the treatment
and control of hydrocephalus: given the current value of
the patient’s ICP, what is the probability that it will
exceed a critical high level? And how is that probability
influenced by neurological characteristics of the patient
such as their resistance to CSF flow and the noise inten-
sity of the fluctuations in CSF formation rate which in
turn drives the fluctuations in their ICP?
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Computing probabilities of clinically relevant events

The mathematical formulation of the problem posed in
the previous paragraph is: given that a patient’s ICP is
currently x mmHg, where x is an arbitrary value, what
is the probability that the ICP will exceed a critical
threshold ‘b’ (mmHg) at a future time? Mathematically
stated: given that p(s) = x, find the following transition
probability— P[p(t) > b | p(s) = x], t > s. Simple though
the question seems, finding the answer requires comput-
ing the conditional probability distributions of the CSF
process. Since the conditional probability distributions
follow the Fokker-Planck partial differential equation,
the problem is non-trivial, but Karlin and Taylor [31]
circumvent the difficulty by solving a boundary-value
problem associated with this dynamically changing prob-
ability. They show that the required probability satisfies a
nonlinear ordinary differential equation which must be
solved subject to two conditions on the probability that
are natural consequences of the current ICP level when it
is at one of the two extreme points of the range of ICP
values under consideration. It is these conditions that
give rise to the term ‘boundary value problem.

Results and Discussion

We state and discuss the significance of the mathemati-
cal results, deferring their proofs to the Appendices
(Additional file 1, Additional file 2 and Additional file 3)
in the interest of maintaining clarity of exposition. Our
first result is the exact analytical solution to the stochas-
tic Marmarou model.

Solution to stochastic Marmarou model with constant
rate infusion

For a constant infusion rate I, equation (9) is explicitly
solvable in closed-form as shown below. Given any
initial ICP value “py“ (mmHg) at time t = 0, the future
ICP value at any time “t” is given by:

exp[{E(I+1;b)— GzzEz }t+o-EW(t):|
pl+l§‘[exp|:{E(l+l;b)—GzzEz}S‘FO'EW(S)]dS

The proof is provided in additional file 1: Solving the
stochastic Marmarou model. Note that the solution to
the stochastic Marmarou model is found through an
“integrating factor” which involves an integration con-
stant, the evaluation of which necessitates a unit of 1/min
unit for the 2 inside the exponent of the exponen-
tial function. The noise intensity parameter ¢ and the
Brownian Motion process W(t) in the solution show the
explicit influence of noise on the evolution of the ICP,
underscoring the importance of modeling the noise in
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the clinical ICP data. In addition to the practical utility of
offering a closed-form analytical solution, this result has
value for another reason: it shows explicitly that noise
cannot be averaged away when the process is nonlinear.
If the Brownian motion process W(t) entered the solu-
tion for p(t) in an additive linear way, its effect would dis-
appear on average. But the Brownian motion process
enters the solution in a highly nonlinear fashion, making
it impossible to average out its effect to zero. Finally, the
solution depends upon the noise intensity parameter ¢ in
a mathematically continuous way, a fact that is meaning-
ful because the result shows that the solution to the
deterministic Marmarou model [5] emerges as the special
case corresponding to 6 = 0 mL/min, and so, it is natural
to ask if the simpler deterministic model would suffice
when the noise intensity is small. Should the influence of
noise be negligible in a particular case, the value of ¢ will
be very small, and, because of the mathematical continu-
ity in its dependence upon o, the stochastic solution will
be very close to the deterministic solution in such a case,
and we may use the simpler deterministic model with
confidence. However, the stochastic model is preferable
in general for two reasons: it captures the dynamics of
the ICP data better than the deterministic model when
the noise intensity is larger, and furthermore, the sto-
chastic model characterizes the risk profile of the patient
probabilistically. Almost tautologically, the deterministic
model cannot evaluate the risks due to the errors that are
an inseparable part of medical data because deterministic
modeling philosophy sees the future as completely pre-
dictable from the present situation. These considerations
suggest that, from a conservative modeling perspective,
incorporating the influence of noise into the dynamics is
conceptually more defensible.

In principle, the solution contains all the transient
probability distributions of the ICP process that charac-
terize it on its way to equilibrium. In practice, mathema-
tical difficulties may make these transient distributions
hard to extract from the solution. But we can still com-
pute the probability of the critical events by using a
methodology that does not depend on that knowledge.
And we can still draw useful information about the nat-
ure of the process at steady-state. Next, we find the
steady-state probability distribution of the ICP process.

Steady-state probability distribution of ICP

The steady-state probability distribution of the ICP is
gamma with the parameters shown p.149 in [29], and
will exist provided that the noise intensity parameter ¢

satisfies the condition: 52 2( R;E Pb) .
The proof is provided in additional file 2: Finding the
steady-state probability distribution of the ICP. The tran-

sition probability function satisfies the Fokker-Planck
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partial differential equation, which at steady-state,
becomes an ordinary differential equation (ODE). The
solution to the Fokker-Planck ODE yields the steady-
state probability density function, but an arbitrary con-
stant appears in the solution whose value must be such
that the total area under the steady-state probability den-
sity function is unity. The integration required to evaluate
the normalization constant generates a unit of 1/min for
the 2 in the above inequality. The mean and variance of
the gamma distribution are not independent parameters
as they are for the normal distribution. Unlike the normal
distribution in which the mean is the location parameter
and the variance is the shape parameter, neither of the
parameters of the gamma distribution is a pure location
or pure shape parameter. Thus, the two parameters that
characterize the gamma distribution jointly determine its
location and shape, because the mean and variance of
this distribution are functions of both the parameters. In
practice, biological phenomena will converge to a steady-
state, but nonetheless it is important to check that the
technical condition stated for the existence of a steady-
state distribution is satisfied by realistic values of the
Marmarou model parameters. We obtained typical values
of R, E, po, pp, and I from a combination of [2] and pri-
vate communication with Dr. M. Czosnyka, yielding R =
7 mmHgmL ™" min (reported values range between 6 and
10 mmHgmL'1 min), po = 0 mmHg and p, = 8 mmHg.
Elevated elasticity is reported to be E > 0.18 ml™" and the
rate of infusion is I = 1.5 mLmin™ [2]. The value of E
was taken to be E = 0.15 mL™, based on private commu-
nication with Dr. Czosnyka, and this value came from
data gathered in infusion studies conducted at Adden-
brooke’s Hospital. py, is a baseline pressure which is dif-
ferent for each individual patient. Based on the ICP plots
in [2], we set p, = 8 mmHg. This value is close to the
average pp, across all infusion studies conducted at
Addenbrooke’s Hospital which Dr. Czosnyka, in private
communication, reported to be 6 mmHg. While the
authors solved the deterministic Marmarou model for the
general case of pg # 0 mmHg in [2], and found that the
average value of pg in the infusion studies was py = 4
(private communication with Dr. Czosnyka), the non-
zero po case is currently not analytically solvable for the
stochastic Marmarou model. Our py = 0 mmHg assump-
tion is consistent with [5], in which the authors ignore
the reference pressure. However, we acknowledge that
the non-zero p, case is an important issue in mathemati-
cal modeling of hydrocephalus—and the author and his
collaborators are working on an algorithm to solve the
stochastic Marmarou model for non-zero poy. A typical
value for o is difficult to find since the input flow rate of
CSF is not accessible to direct observation—only the fluc-
tuations in the ICP are observable. We estimated o
roughly as, ¢ = 0.33*I = 0.33*1.5 mL/min = 0.5 mL/min,
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so that the flow fluctuations are 33% (1/3) of the flow
rate. This is a rough estimate—the choice of a typical
value for ¢ is unclear. Because of the uncertainty and
approximations involved in the estimate, we did the com-
putations in which ¢ was fixed, not just at 6 = 0.5 mL/
min, but also at values of ¢ lower as well as higher than
0.5 mL/min in order to check the robustness of the con-
clusions. We have reported the results for ¢ = 0.5 mL/
min and for ¢ = 0.8 mL/min. The results of the compu-
tations of the probability as a function of R are robust
across a wide range of o, so that, even though the esti-
mate of ¢ is only approximate, we can be reasonably con-
fident about the conclusions of the analysis. To examine
the influence of o itself on the risk probability, we com-
puted the probability across a wide range of ¢ as shown
in Figure 4—again, in an effort to reduce the impact of
our imprecise knowledge of ¢ upon the findings. While
our estimate of ¢ is only approximate, we note that there
is imprecision and uncertainty about a// the parameter
estimates, especially that of the CSF flow resistance ‘R’
Estimation methods specifically developed for dynamic
models are needed. In this paper, the primary objectives
were to introduce SDE methodology to CSF research,
demonstrate its analytical power, and show its clinical
usefulness in dynamic risk management. Consequently,
we used existing typical estimates of the model para-
meters even though some of them are imprecise and
approximate. With ¢ = 0.5 mL/min, the condition for the
existence of a steady-state probability distribution is met
with ease.

Our next three results are motivated by the following
considerations. A larger cerebrospinal fluid resistance R
tends to increase ICP by increasing the pressure due to
the circulatory CSF component. This is a direct conse-
quence of Davson’s equation [6]: ICPcgr = (resistance to
CSF outflow) x (CSF formation) + (pressure in sagittal
sinus). This naturally leads to the following questions.

»<| Probability that /
"t ICP reaches 40 Initial ICP
osF mmHg is 35 mmHg

04fF

03

02F

01

M " —t

+ ¢ mL/min

05 0.7 09 11 13

Figure 4 Probability that ICP reaches 40 mmHg as a function
of noise intensity parameter o, starting at an ICP level of 35
mmHg. Values of CSF flow parameters used in this simulation: E =
015 mL", Pp = 8 mmHg, R = 7 mmHg/(mL/min), | = 1.5 mLmin™,
o ranged from 0.4 mL/min to 1.3 mL/min.
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How will the intensity of the fluctuations influence the
relationship between resistance and ICP? The same rela-
tionship may hold on average, but, as anticipated in the
solution to the stochastic Marmarou model, it may be
moderated by the noise intensity parameter because of
the nonlinearity of the ICP process. How will the inten-
sity of fluctuations affect the average steady-state ICP—is
the average steady-state ICP smaller or larger when the
intensity of fluctuations increases? Finally, will the inten-
sity of fluctuations attenuate or amplify the effect of resis-
tance to CSF flow on the average steady-state ICP?

Relationship between average steady-state ICP and
cerebrospinal fluid resistance

The average steady-state ICP, denoted by y, increases
with the cerebrospinal fluid resistance R—thus the rela-
tionship between R and ICP holds on average.

The steady-state probability distribution of ICP is
gamma with the parameters shown in the previous sub-
section. From well-known properties of the gamma dis-
tribution, it follows that the steady-state mean ICP level

p is given by: u=(RI+py)- %02. Therefore,

2
g_g =1-9E From the expression for %, it is clear

that the average ICP level does indeed increase with R,

provided that U_ZE < 1. This condition is satisfied, using
the values of the parameters in the previous subsection.
Thus, the increasing relationship between the actual
ICP level and the cerebrospinal fluid resistance, pre-
dicted by Davson’s equation when ICP is conceptua-
lized as a deterministic process, also holds on average
at steady-state when ICP is modeled as a stochastic
process.

Relationship between average steady-state ICP and noise
intensity
The average steady-state ICP level, decreases with the
intensity of fluctuations, measured by the infinitesimal
variance parameter G°.

From the relationship derived in the previous subsec-

2
tion, 4 = ( RI+p,, )_ RGZ E it is clear that p decreases

as 6 increases. A larger noise intensity corresponds to
greater variation in the CSF input flow rate which trans-
lates into greater variation in ICP, and these larger fluctua-
tions could cause the average ICP level to increase,
decrease or remain unaffected. The nonlinear influence of
the parameters of CSF flow dynamics on ICP level turns
out to reduce the average ICP value when the fluctuations
in ICP are greater. This is an outcome that one would
expect to find when steady-state has been achieved—when
the transition probabilities have settled down to constant
levels so that the probability distribution of ICP is no
longer changing over time. This mathematical finding
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could be tested by separating a random sample of patients
into two groups, such that one group has more variability
in its ICP levels (due to higher variability in its CSF input
flow rate) than the other group, and then conducting
a statistical test of significance—such as a t-test—on the
difference in mean ICP levels in these two groups at
steady-state.

Effect of noise intensity on the relationship between
average steady-state ICP and cerebrospinal fluid
resistance

The resistance increases the ICP on average by a smaller
amount when the intensity of fluctuations is higher.

From 4 = ( RI +py, ) - RG;E , it is clear that a higher

o” will dampen the effect of the cerebrospinal resistance
on the average steady-state ICP level. This is an out-
come that one would expect to find at steady-state. The
mathematical finding could be tested by separating a
random sample of patients into two groups, such that
one group has more variability in its ICP levels than the
other group (due to higher variability in its CSF input
flow rate), and then correlating the mean ICP level with
the cerebrospinal resistance in each group at steady-
state. According to the mathematics, the correlation
should be smaller in the group with more variable ICP.
Given the linear relationship between the steady-state
mean and the cerebrospinal resistance, a simple correla-
tion coefficient such as the Pearson product moment
should suffice.

Next we turn our attention to dynamic management of
the patient’s risk. Risk may be quantified in terms of the
probability of the onset of some critical event, say the ICP
exceeding a dangerously high level. Given the current
value of the patient’s ICP, what is the probability that it
will exceed a high level? Such a probability is intrinsically
dynamic because it depends upon the patient’s current
condition (their current ICP), the dynamics of the patient’s
CSF flow and the noise intensity 6>. We want to under-
stand how the probability is influenced by important clini-
cal characteristics of the patient such as their resistance to
CSF flow, and by the noise intensity.

Computing clinically relevant dynamic probabilities
Given that the current ICP is x mmHg, where 0 < x < b,
let u(x) denote the probability of reaching the level b.
Then u(x) satisfies the following nonlinear differential
equation, which must be solved subject to the two con-
ditions on u(x) at x = 0 and at x = b:

_ 2. 202 02
d_u{EIX_EX(X pb)}+d l;G E-x
dx R dx 2
u(0)=0, u(b)=1

=0
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The conditions on u(x) at the two corners x = 0 and x =
b make this a two-point boundary value problem. The
solution is given in terms of the scaling function S(x):

N 2[EI§ _ Ei(CR— Pb)]

=) =500) where §(x) = J.s(n)dn, and s(x) = exp —J.

sy s0)

O'ZEZEZ

The integrals defining s(x) and S(x) are indefinite at
the lower end because the final answer is unaffected by
its choice. For our clinical applications, it is natural to
take the lower end point to be zero.

The proof is deferred to additional file 3: Computing
clinically relevant dynamic probabilities. While the above
representation is, in principle, a closed-form analytical
solution, it is, in practice, a quasi-analytical solution
because the integral that defines s(x) cannot be obtained
in closed-form. However, that is no limitation because we
can integrate it numerically after substituting the empiri-
cally established values of the parameters. We used the
parameter values shown in the subsection “Steady-state
Probability Distribution of ICP.” We took the critical level
‘D’ to be 40 mmHg, based on the clinical finding reported
in [2] that patients were able to tolerate increases in ICP
up to 40-50 mmHg. Our rationale was that, from a clinical
perspective, a conservative approach to patient manage-
ment would be consistent with assessing the probability of
reaching the lower end point of the 40-50 mmHg range
that patients are able to tolerate. Thus our critical event is
defined as “reaching an ICP of 40 mmHg.” In order to
understand how the probability is influenced by the noise
intensity parameter 6, we computed the probability over a
range of 6 = 0.4 mL/min to ¢ = 1.3 mL/min. For each
value of ¢ in this range, we solved the boundary-value pro-
blem to find the probability of reaching 40 mmHg.
Furthermore, in order to understand the influence of the
patient’s initial condition upon the probability of the criti-
cal event, we repeated this set of computations for
three different starting levels of ICP; the curve shown in
Figure 4 is for a starting level of ICP of 35 mmHg. In
order to understand how the probability is influenced by
the resistance to CSF outflow R, we computed the prob-
ability over a range of R = 4 mmHgmL ™" min to R =
12 mmHgmL ™" min. For each value of R in this range, we
solved the boundary-value problem to find the probability
of reaching 40 mmHg. Again, we repeated this set of com-
putations for three different starting levels of ICP; the
curve shown in Figure 5 is for a starting level of ICP of
35 mmHg. Across the three initial levels of ICP, the curves
have a similar shape and are simply translated vertically.
Figures 4 and 5 show that the probabilities increase at an
increasing rate (convex functions). Furthermore, they tell
an interesting neurological story—namely, that the prob-
abilities of the critical events exhibit strong threshold

d¢g |
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Probability that ICP
ost reaches 40 mmHg

Initial ICP
/ is 35 mmHg

06

: . 5 R mmHg/(mL/min)
Figure 5 Probability that ICP reaches 40 mmHg as a function
of resistance to CSF flow parameter R, starting at an ICP level
of 35 mmHg. Values of CSF flow parameters used in this

simulation: E = 0.15 mL™, pp =8 mmHg, I =15 mLmin’,

6 =08 mL/min, R = ranged from 4 mmHg/(mL/min) to 12 mmHg/
(mL/min).

effects. In Figure 4, below a critical level of noise intensity,
the probabilities are very low—almost zero—but beyond a
threshold value of 6 = 1.1 mL/min in Figure 4, they rise
steeply. In Figure 5, as R (mmHgmL 'min) varies from 4
to below 10, the probabilities are almost zero, but beyond
R = 10 mmHgmL ™" min, they rise dramatically. Further-
more, at low levels of noise intensity, the probabilities
remain close to zero throughout the range of R
(mmHgmL'lmin) from 4 to 12. But as ¢ increases to
0.8 mL/min-the value assumed for it in Figure 5-R has a
strong effect on the probability beyond the critical thresh-
old of 10 mmHgmL 'min. The clinical significance of
these findings is that erratic fluctuations in ICP (caused by
a larger input flow rate noise intensity ) will significantly
increase the patient’s risk, as measured by the probability
of the critical event. Because the risk increases rapidly
beyond the threshold value of o, these results suggest that
an essential component of risk management is to carefully
minimize erratic fluctuations in the patient’s CSF input
flow rate at all times. Finally, Figure 6 shows the probabil-
ity of the critical event as a function of both R and ¢ in a
three-dimensional plot. The two-dimensional surface
shows the value of the probability for each combination of
values of R and o. To facilitate interpretation of the sur-
face, we used a mesh in which the dark lines are the prob-
ability plots as a function of R and the red lines are the
probability plots as a function of ¢. Figure 6 shows very
clearly that threshold effects are sensitive to both R and o,
and beyond the threshold, the probabilities asymptotically
approach one.

Conclusions

The stochastic generalization of the Marmarou model
offers a tractable analytical description of the noisy ICP
dynamics and yields insights into the impact of noise. The
SDE offers a rigorous analytical framework to study issues
of clinical interest and neurological significance such as the
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Probability that ICP
reaches 40 mmHg

1.0

0.5

-

R mmHg/(mL/min) 12

Figure 6 Probability that ICP reaches 40 mmHg as a function of resistance to CSF flow parameter R, and noise intensity parameter o,
starting at an ICP level of 35 mmHg. Values of CSF flow parameters used in this simulation: E = 0.15 mL™", p, = 8 mmHg, | = 1.5 mLmin™',
R = ranged from 4 mmHg/(mL/min) to 12 mmHg/(mL/min), and & ranged from 0.4 mL/min to 1.3 mL/min.

patient’s risk. A key clinical implication is that fluctuations
in the CSF formation rate—which increase the fluctuations
in ICP- should be minimized to lower the patient’s risk.
Future work could extend the framework developed in this
research to accommodate the non-zero reference pressure
case. Finally, the stochastic differential equation framework,
in conjunction with nonlinear control theory, can be used
to develop a nonlinear automatic controller to regulate
shunts to facilitate continuous CSF drainage.

Additional material

Additional file 1: Solving the stochastic Marmarou model. This file
derives the solution to the stochastic Marmarou Model assuming a
constant infusion rate.

Additional file 2: Finding the steady-state probability distribution
of the ICP. This file derives the steady-state probability distribution of
the ICP.

Additional file 3: Computing clinically relevant dynamic
probabilities. This file shows how to derive the dynamic probability of
the critical event—defined as the ICP exceeding the critical threshold level
of ICP of 40 mmHg, as a function of the patient’s current ICP level, the
baseline pressure, the patient’s neurological characteristics— the
resistance to CSF flow, the cerebral elasticity, and an experimental
variable-the infusion rate.
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